DEPA®

DEPA® Valve Ball Lifter

www.depapumps.com

DEPA® Valve Ball Lifter offers many key features and benefits including:

1 Drainage in Place

Innovative design enables in-place drainage for residue-free operation in critical applications such as paint & varnish, storage tanks and filling machines.

2 Ease of Operation

A dual-rotating pin ensures flawless operation in both clockwise and counter-clockwise direction, eliminating the challenges associated with sticking caused by media remaining in the pump housing.

B Extended Service Life

Design in combination with 316L stainless steel delivers superior resistance to corrosive chemicals such as alkalis, acids and solvents, thus ensuring reduced maintenance and longer service life.

CRANE

DEPA® Valve Ball Lifter

Features and Benefits

Туре	15	25	40	50	80
DH-FA	•	•	•	•	•
DL*	•	•	•	•	•

^{*}Applicable for CA/CX/SA/SS/SX/SF/SFS

- The material of metallic components is stainless steel 1.4404/316L
- · The external sealing is a FKM O-Ring (as standard version)
- Roughness average R_a=12,5µm*

Particle Size

Type	15	25	40	50	80
mm	3,5	4	6	8	10

Handling

Figure 1: In normal operation the pin is completeky extended; valve ball is able Important: to move up and two positions are down.

Figure 2: Push pin into the guide bush.

only possible.

3

Figure 3: When reaching the end position, rotate the pin by 90 de-

grees.

Both directions are possible.

Applied Guidelines

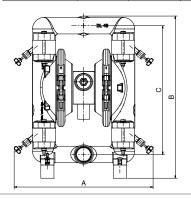
The DEPA Valve Ball Lifter is designed in accordance with pump specifications, and is ATEX compliant with directive:

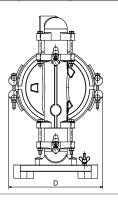
- 94/9/EC equipment group II, category 2GD, Explosion group IIB Tx (II 2 GD IIB Tx*) and equipment group I, category M2 (I M2)
- Machinery Directive 2006/42/EC

*only in combination with a ATEX certified pump

Harmonized standards:

• DIN 12162 (Liquid pumps - Safety requirements -Procedure for hydrostatic testing)


ATEX-compliant II 2GD IIB Tx



Dimensions

C:	Туре					
Size	DH15	DH25	DH40	DH50	DH80	
A (max.)	287	349	437	564	671	
В	338	427	512	655	817	
С	252	328	382	497	622	
D	174	234	266	351	434	

Size	Туре					
Size	DL15	DL25	DL40	DL50	DL80	
A (max.)	301	356	422	528	625	
В	295	405	492	635	790	
С	251	320	391	509	633	
D	246	234	285	353	437	

CPE-DEPA-VALVE BALL LIFTER-FL-EN-A4-2015_06_12

Crane Process Flow Technologies GmbH Heerdter Lohweg 63-71 40549 Düsseldorf, Germany Tel.: +49 211 5956 0 Fax: +49 211 5956 111 www.depapumps.com

www.cranecpe.com

Crane ChemPharma & Energy, DEPA®

Crane Co., and its subsidiaries cannot accept responsibility for possible errors in catalogues, brochures, other printed materials, and website information. Crane Co. reserves the right to alter its products without notice, including products already on order provided that such alteration can be made without changes being necessary in specifications already agreed. All trademarks in this material are property of the Crane Co. or its subsidiaries. The Crane and Crane brands logotype, in alphabetical order, (ALOYCO®, CENTER LINE®, COMPAC-NOZ®, CRANE®, DEPA®, DUO-CHEK®, ELRO®, FLOWSEAL®, JENKINS®, KROMBACH®, NOZ-CHEK®, PACIFIC VALVES®, RESISTOFLEX®, REVO®, SAUNDERS®, STOCKHAM®, TRIANGLE®, UNI-CHEK®, WTA®, and XOMOX®) are registered trademarks of Crane Co. All rights reserved.

^{*}upon request available for SF/ SFS (R_a =3,2 μ m)